Thsl Gontrol Madule
For Kontakt 4/5

User's Guide

Nils Liberg
Robert Villwock

Table Of Contents

O I 10T 1o 1o o PP 3
1.1 Overview Of the TCM ...t 3..
1.2 KSE FUNCHON TYPES couiuiiiiiiiieiiiii e emeces ettt e e e e e e 3.
1.2.1 KS FUNCHONS ...ttt mmmme ettt e e e e e e 4
1.2.2 KN FUNCHONS ..ottt 4
1.2.3 TaSK FUNCLONS......cooiiiiiiii et ceeee e 4
2.0 USING The TCM... it eeeaaans 5
2.1 KScript EQItOr SEtliNgSoooeeeeeiiiie e 5.
2.2 Initializing the TCM ... e eeees 5
3.0 Single and Multitaskingcccoiiiiiiiccciie e 5
3.1 The Kontakt MOUEIcooiiiiiiiiiiie i)
3.2 Thread Safety and tCM.Wat.........couuueiiic e 6
3.3 Determining the Maximum Stack Depth Neededcooevviiiennnn. 7
3.4 Estimating the number of Tasks Needed.......cccccooviiiiiiiiiiiiniiiiiciiiinn. 7
3.5 KSP INCONSISIENCIES ...uuiiiiiiiiiiiie e emmree et e e et e e e e eenees 7
4.0 Writing Task FUNCHIONS.........coiiiiiiiiieeeeee e 8
4.1 Task Function Parametersciiiiiiieeeee e 8
4.2 Local Variables...........ouuuiiiiiiiie e 11
4.3 Lifetime and SCOPE........uiiiiiiiieiiieemmc e e 11
4.4 Task VarabIes........cooiiiiiic e e eeeee 12
4.5 Task Function LiImitationSccoeuvuuiiiicmceeiiiie e 12
5.0 The Task StacKccoovuuiiiiiiiiii e 13
5.1 The PUSh/POP OPeratioNnsS........ccooeeiiiiiieieeeiiiiee et e e 13
5.2 USING the StaCKcoii it eeeee 13
5.3 Stack Data Lifetime and SCOPE...........oevummmeniieeeeieiiiiiie e 15
(L0 I 41/ B 5 (o1 o] 1] T 17
6.1 Task OVEITIOWuueeiiiiiiee e e e 17
6.2 Stack Overflow/Underflow...........cooovuiiiiiiiiiiiiiiee e 17
6.3 Using DebUg MOAEccoiiiiiii e 17
6.4 Handling EXCEPLIONScccviiieiiiie e 17
7.0 Relating Tasks to Callbacks...........ccooiieeeeiiiiiiiiiii e, 18

8.0 Reserved Names and System Constants........ooeeeeevinieenennnn.. 19

NOTICE: Robert Villwock and Nils Liberg have placed tha@usce code into the public domain free from
any copyright and full permission is hereby granf@danyone to incorporate this code in their Ké&hta
scripts. You must however assume any and all itglidr its use and we provide no assurance orantae
that it will perform in any specified way.

Page 2

1.0 Introduction
The Task Control Module, TCM, is a recent enhancementNis Liberg’s KScript Editor (the KSE).
The TCM adds some long-sought-after K®Rtensions in the form of ‘callable’, parametetiZanctions
and noteworthy multitasking support. An overviewtloé TCM is presented in section 1.1, followed hy a
overview and comparison of the KSE function typew ravailable to Kontakt scripters in section 1.BeT
remainder of thisJser’'s Guidecovers everything you need to know to profitatde the TCM.

We strongly urge you to read this User’'s Guiddsrentirety in order to get the most from all tbevices
the TCM can provide for you. Aechnical Guideis planned but in the meantime, if you are on¢éhoke
users who want to tinker with the gears and pullayder the hood, a pdf containing my original desig
guidelines is available on request.

The TCM was developed jointly by Nils Liberg andgalf. | cooked up the design concept about a year
ago but quickly realized using it with the thenstixig KSE/KSP syntax would have resulted in vegptic
and error-prone coding. So, Nils developed the rmedded KSE support and integration and we bothtspe
a lot of back and forth effort refining the initidésign to where it is now.

We sincerely hope you will benefit from this lategtigrade to the KScript Editor. Without a doubg th
KSE remains the premiere tool for writing and maiiming Kontakt Scripts. If you haven’t been usinidgsN
Editor, download and start using it today. Youdbs wonder how you ever got along without it.

* Kontakt Script Processor

1.1 Overview of the TCM

The TCM is a collection of routines and data suues that are integrated with the KSE to facilitate
passing data to and from ‘callable’ functions. Thew type of function has been given the name ‘task
function’ and is defined with the keywotdskfunc. Task functionslike native KSP functions, are ‘called’
(as opposed to being expanded inline like stand&M# functions). Butunlike native KSP functions, task
functions provide a standard parameter passingusymhe current version of the TCM only supporteger
parameters, ie simple variables, constants, oresspins reducing to a single integer. However @sigeh of
the TCM allows for the possibility of adding ottdata types such as arrays and strings. Whethert@uch
data types will be added in the future dependsevogived need and available time.

The TCM also provides some much-needed supponintdtitasking. Functions defined witiaskfunc
are inherently thread-safe and re-entrant. Moredssk functions also support true local varialbegh are
allocated on the active task stack and therefaénderently thread-safe also. In addition, the T@uVides
a number of thread-safe data storage and retrieeahanisms including a new data type very simuar t
polyphonic variables (polyvars) buseable in anycallback. See section 4.4 for a discussion of this new
variable type.

Because the TCM is integrated with the new KSE atampall the gory details of parameter passingl an
stack context switching are nicely hidden ‘under tlood’. In fact, writing and referencingaskfunc is no
more difficult than writing and referencing the ndamiliar KSE functions. And, because the TCM is
integrated with the KSE, you don’t even need toarmhan external script module to use it. The TClgtem
software is essentially ‘built into’ the KSE, sangly includingtcm.init(max_tasks) in your intialization
callback (ICB) is all it takes to start using th€NI.

1.2 KSE Function Types

With the advent of the TCM, there are now 3 typlasser functions available to the Kontakt scriplidre
purpose of this section is to describe and comitese function types and to adopt some terminologly
we can use throughout the rest of this User’'s Guide

Page 3

1.2.1 KS Functions

KS functions are the ‘original’ functions introducedgth the first KScript Editor. Initially, Kontaktid
not provide any kind of user function capabilityaditso KS functions were included with the KSEnfrats
inception to provide this much-needed adjunct eoriw KSP language. KS functions provide the méams
writing highly modular code that is far easier totevand maintain than the raw KSP syntax. OridgindS
functions provided no ‘return value’ (and thus ight-side assignment statement invokation) but tfidy
(and still do) allow for output parameters to begeal. But, with the new compiler added in V1.5h8,KSE
now also includes user functions with a return gglnd right-side reference functionality).

KS functions are very versatile in terms of whéreytcan be used and the data types which can begas
as parameters. However, because KS functions hawative support in Kontakt, every invokation a8
function results in the code body being inlined.v8vle KS functions provide a much-needed souraico
modularity, they do not provide the program-sizZecefncy of traditional ‘callable’ functions.

On the other hand, for smaller programs or whedepace efficiency is not important, KS functians
hard to beat. Because the code body is alwaysethl{and the parameters are essentially passedngileo
time), KS functions have no ‘calling overhead’ foeak of. In fact, even with larger programs where
code-space might be important, short functions siilé probably best implemented as KS functions,
especially when there are parameters to be paHsttere are no parameters to pass, then using a KN
function (see section 1.2.2) might be a bettera@dithe routine is referenced multiple times aqugcode.

1.2.2 KN Functions

Since K4, the KSP now includes native user fundtittrat can be used to write ‘callable’ code modules
We will refer to these native KSP functionskad functions. KN functions can be written once anenth
invoked from multiple locations in your code (usithg keywordcall) without their code body having to be
inlined (for each invokation) as witkS functions. Thus KN functions provide code-sizecg#hcy in that
the body of the function only has to be stored plaee but can be invoked anywhere in your codegf@xc
from the ICB). On the downside however, KN funcialo not provide for passing parameters so any data
they manipulate must be handled by the scripterallysvia global variables.

The KSE provides a ‘pseudo-local’ variable typeudse within a function body. These local varialaes
actually global variables with name variants assigjhy the KSE compiler to prevent name conflictemwh
locals are named the same within several functiBmen though these pseudo-local variables areruet t
local variables, they can nonetheless provide naditlye same benefits and they can be declaredtink®
and KN functions. They can also be used within task fionst (section 1.2.3) by using the explicit
global/local directives as will be discussed inteec4.2.

1.2.3 Task Functions

With the TCM extension of the KSE, some of the eatures of bothlKS and KN functions are now
available with a new breed of function callethsk function. While both KS and KN functions are declared
with function..end function, task functions are declared witdskfunc..end taskfunc

Task functions allow you to pass both input ancpoouparameters and, optionally, to return a fumctio
value when referenced on the right side of an assgmt statement. Of course, as with all generalized
parameter passing protocols, these functions hawe parameter-passing overhead connected with them.
However, for lengthy functions they are very cogaeg efficient. And, if you need to write functiotiat
are reentrant, task functions will probably beltlest and most-efficient way to go.

Since task functions internally utilize KN funct®at their core, they cannot be invoked from thB.IC
However, you can always use the pgs trick to exeeany initialization routines that need to refeeentther
KN or task functions. For more detail about usiasktfunctions, see section 4.0

Page 4

2.0 Using the TCM

2.1 KScript Editor Settings

To make the services of the TCM available to yauwips, you must usélils Liberg’s KScript Editor ,
V151 or higher (referred to throughout this guidetlle KSE). You must also use theew compiler by
unchecking Use old compiler version in the Settings menu. You should also enabldettiea syntax checks
option. Due to some yet unexplained problem withalzation, whenever you switch from the old teet
new compiler you will have telose the KSE and then relaunch it This will insure that the KSE is
properly initialized. You will only need to do thisice as long as you stay with the new compilewéi@r,
anytime you switch from the old compiler to the negwu will need to repeat this ‘close and relaunch’
initialize the new compiler properly.

To produce more compact output code from the canfilot only for the TCM system code but for your
own application code as well), you should also énaive Compact output and Optimize compiled code
options in the Settings menu. You may also cheekGbmpact variables option to further ‘densify’ the
compiled code and/or to make it less readablefigiirig eyes’ if that has been your practice.

2.2 Initializing the TCM
To utilize all the services provided by the TCM,yadu need do is invokeEm.init (stack_depth) in your
script’s initialization callbackiCB).

tcm.init(385) { this script requires a maximum stack depth ofag8sds }

As shown above you must also specify the maximatkssize your application requires (see secti@h 3.

3.0 Single and Multitasking

3.1 The Kontakt Model

KSP operation can be either single or multi-threladepending on whether or not your script uses the
wait function. Without waits, each callback will runcaompletion before any other callback will run. tst
mode, callbacks are lined up in a queue and areexdcuted sequentially, thus operating as a stagle
system. However, when a callback executegad statement, the callback is ‘suspended’ for a tand
other callbacks are free to run before the suspmkodkback continues. Thus, callbacks containingsaaan
execute in an interleaved fashion similar to weatarmally viewed as multitasking. So one way &wthe
Kontakt model is that callbacks represent indepengeocesses otrasks and these tasks can execute
sequentially or concurrently depending on whetharad the wait function is invoked.

However, since any callback that containgaat statement has the potential to be reenteredpdssible
concurrency often gives rise to variables beingreviden unexpectedly. The problem can be illugdat
easily with a wait-paced for loop. If your loop asan ordinary KSP variable to hold the loop indewill
be overwritten if the callback is reentered during one of thepleavait intervals. This will keep resetting
the loop index so the loop will not execute asnded. The ternthread-safe is often used to refer to
variables (or other storage mechanisms) that ategted in some way from such reentrance problems.

The KSP only provides one limited form of threaflesa@ariable called a polyphonic variable (polyvar).
Polyvars are essentially arrays indexed by theeatimote event'’s id. Thus, if you have a wait-pdoedoop
that executes in the note or release callback (IRCR/), you can use a polyvar for the loop index each
concurrent execution of the callback will haveatsn copy of the loop index and therefore the loalp rwn
properly. However, there is often a need to exethitgys like a wait-paced loop in other callbackdsy, so
polyvars alone do not solve the general problemro¥iding thread-safe data. What is needed is dante
of polyvar indexed bgallback id rather than bgvent id and the TCM provides several such data types.

Page 5

3.2 Thread Safety and tcm.wait

The TCM allows you to create multiple tasks thi&e tallbacks, can be executed concurrently. Howeve
unlike callbacks, each TCM task has its own dedicated daticture known as a tastack. The TCM
stack-based architecture is such that all TCM carepts ar@nherently thread-safe at the task level. And,
by using a special variant of tit function (known ascm.wait), the concurrency of TCM tasks can be
‘tied’ to the concurrency of KSP callbacks. Thikwals the TCM to provide several thread-safe dapesy
that are ‘effectively’ indexed by thellback id. Actually, TCM thread-safe data is indexed todb#vetask
id but, if we ‘tie’ TCM tasks to KSP callbacks, ttask id andcallback id will relate to each other.

Whentcm.wait executes, it behaves much like the simpéat function in that it suspends the current
callback for the specified time (in usec) and alather callbacks to run. Howeuwem.wait does more than
that. For eackcm.wait executed, the TCM creates a new task with an estptk (ready to support any new
callback that might be triggered). Meanwhile, therent task is ‘put to sleep’ and it's stack isesévor later
recall when thécm.wait time expires. When that happens, the TCM restitse®rmer stack to the exact
state it was in when the task ‘went to sleep’. Thiue paused callback is free to continue with@ehebeing
aware that anything happened during the wait pearatiall TCM thread-safe data will still be intact.

Sincetcm.wait can be used anywhere thait can be used (including within a function body® #asiest
way to ‘tie’ TCM tasks to KSP callbacks is to reg@aall invokations ofvait with tcm.wait. If you do this,
task switching will always occur when a callbactemupts another callback and you will be ablege all
TCM thread-safe data types without any further gidiysee sections 4.2, 4.4, and 5.0) .

In certain special situations, you may be able towait andtcm.wait but, it is not always obvious when
you can and can’t do this. When a callback is &#rgd during a simplesait, a new TCM task wilhot be
created so the new callback will have to run in $hene task as the suspended callback issuing tite wa
There are situations in which this will not be algem but such situations are usually tricky tolyrea
However, advanced users that want to explore tsipility will find more information in section(.

The penalty for usingcm.wait versuswait is minimal. In code spac&m.wait compiles only one extra
line of code for each invokation. Moreover, it takenly 0.5 microseconds or so to effect the taskeod
switch. So, considering the rather imprecise pause provided bywait, it is very doubtful that any
performance difference will be noticed. Therefdhe only practical penalty for usingm.wait will be a
small reduction in cpu reserve for other thingsi(drat only when the duty cycle twim.wait calls is high).

If your script uses no wait statements at all, theth the KSP and the TCM will operate in a singlek
mode. When the TCM is first initialized (in the IEB®ne task is activated with a single stack. Agylas no
tcm.wait function calls are made, all callbacks will be @xed within that original task and no additional
tasks will be created. Since the KSP also exeautgsone callback at a time, thread safety is myér an
issue so the TCM doesn’t need to create more tawkgrovide thread-safe data structures. You caveler
still enjoy the basic feature of task functionscadlable’ functions that accept parameters. Yon aso use
the task stack for scratch pad storage of tempalaty, etc. For more on how to use task functionksthe
task stack, please see sections 4.0 and 5.0.

3.3 Determining the Maximum Stack Depth Needed

The stack is used to hold task function parametedslocal variables (see section 4.0) plus any data
that you might put on the stack temporarily (sestise 5.0). What you need to do first is to courd total
number of parameters plus local variables for danbtion defined withtaskfunc. If any of the functions
invoke other task functions (nested functiongstsdt the top level and then thread your way ddwough
the nest, adding the parameters and locals atleaehuntil you reach the lowest function in theshe

Page 6

Once you have thus determined the stack depthreshjéor each top-levdhskfunc, find the one that
uses the most depth. That number plus any tempdedgyyou intend to put on the stack is the maximum
stack depth your application requires. Howeves, @ways wise to add a little pad because you esilye
make an error in this process or you may laterenariother function that becomes the new maximunthdep
winner, etc.

On the other hand you don’t want to s&dck depth unnecessarily large. The TCM allocates a fixed
block of memory (currently 32K words) for the tasgtkcks. However, since this block MEM_SIZE must
be divided between all the tasks, the larger yokensack depth, the fewer the number of tasksciématbe
supported by the TCM. Therefore, once you havergheted a generous (but not too generous) stackhdept
for your application, you can estimate the maximoumber of tasks that can be supported by dividing
MEM_SIZE by stack_depth. You will find some guias in section 3.4 for how to determine if thiais
sufficient number of tasks to support your appiaat

3.4 Estimating the number of Tasks Needed

To estimate the maximum number of tasks your agfitio requires, you need to examine your code and
find all the processes that invota@m.wait. Then, you need to determine the maximum numbémafs that
each of these processes are expected to run centiyrin the worst case. The summation of all these
possible concurrencies will be the maximum numbbéasks needed.

Analyzing your script and determining the worstecasncurrency is not always easy and the process ca
be somewhat error prone. However, if the estimat®llBM_SIZE/stack_depth (see section 3.3) indicates
that a generously-larger number of tasks can beatgd, everything should be cool. But, if yourc&tdepth
requirement is such that the number of tasks thate supported are marginal (or worse yet, less your
needed task estimate), then you may have a proMemwill either have to limit some of the concurcy
or rearrange your code so that maximum stack pereirwill be reduced. However, you shouldn’t worry
too much about accurately estimating the maximumbrer of tasks that your application requires sihee
TCM will report anexceptionif your script tries to utilize too many tasksdésgection 6.1). And, for most
situations, 32K of total stack space should be nioa@ adequate to support the number of tasks yibu w
require (along with providing the maximum stack ttheypu require).

Finally, it should be mentioned that the actual benof tasks that the TCM will support for a giveack
depth, is a little short what you would calculatéhwEM_SIZE/stack depth. The actual formula usgd b
the TCM is MAX_TASKS = MEM_SIZE/STACK_SIZE - 1, byiou can always verify the actual value
assigned by reading the system constant MAX_TASM&®I1(you have executédm.init with your required
stack_depth parameter).

3.5 KSP Inconsistencies

While it is true in general that any callback camtag a wait can be reentered, there are some &rosp
that you should be aware of. Tipgs callback is apparently never retriggered until it actuadlyits.
Therefore, pgs changes that occur while executiwgitiin the pgs callback, will not retrigger thallback
and moreovesuch changes will not retrigger the callback at allOnly changes that occur when the pgs
callback is not running will actually trigger thaliback. However, other callbacks are free to rimevthe
pgs callback is in @ait.

Theui_update callback is really strange and it's behavior seemdepend on which particular ui element
is clicked. In some situations whenvait is invoked from this callback, it will be abortadd the script may
even be restarted (as if one had clickedapgly button). It is therefore recommended that you nexse
wait ortcm.wait in theon ui_updatecallback.

Page 7

4.0 Writing Task Functions
Generally, Task functions are writen just like K#i¢tions except that the body is defined between th
keywordstaskfunc andend taskfuncas illustrated below for a return-value taskfunc.

taskfunc sum_squares(x,y) -> resultresult = x*2 + y"2 }
declaresql
declaresqg2
sql := x*x
Sq2 = y*y
result := sql + sg2
end taskfunc

Note that local variables are written just likeytlage for KS functions but, in the case of taskcfions,
these are ‘true’ local variables (as opposed tbajleariables with compiler-assigned name variajomask
functions arenvoked the same way as KS functions are invoked. For el@rmpinvokesum_squaresrom
the note callback (NCB), you would write the folliow.

on init
g := sum_squares(3,4)the variable g will be set to 25 }
end on

A more detailed discussion of task function par@mgiassing and the use of local variables will be
presented in sections 4.1 and 4.2 respectively.

4.1 Task Function Parameters

Task functions, like KS functions, can be writteithnor without a return value. The return-valuenfiait
was illustrated in section 4.0. However, one-liseum-value functionsannot be used in expressions like
one-line KS functions can. The reason for thihat task functions require some prolog/epilog cateh
is generated by the compiler ‘behind the scenesérdfore, if you were to write a one-line functiom,
reality it will actually be more than one line adde when compiled.

When task functions contain output parameters @bkas input parameters), the output parameterd nee
to bequalified using the keyworaut in front of the parameter and separated by a sgacdlustrate this,
let’s recast the sum_squares function as a nomargaldue function.

taskfunc sum_squares(xgut sum)
declaresql
declaresqg2
sgl := x*Xx
SQ2 :=yry
sum :=sql + sqg2
end taskfunc

In the above exampleum is qualified as an output parameter. Note that input paramétetsare only
read by the function) do not need to dp&lified. However, when parameters are used both as arult
output (values that are altered by the function) yeed to use thear qualifier. Suppose for example that
we want to add the square of x and y and returmetbelt in x.

Page 8

We could write that this way.

taskfunc sum_squaresér x,y)
declaresql
declaresqg2
sql := x*x
SQ2 = y*y
X :=sql +sqg2
end taskfunc
As mentioned in section 1.0, the current versiothef TCM only supports integer parameters. However,
input parameters can be simple variables, constanexpressions reducing to a single integer. To ilaist
this using the first version of sum_squares, yaudovoke it in the following ways.

g := sum_squares(3,4) g is set to 25 }
g := sum_squares(a,b) q is set to a2 + b"2 }

or,ifa=5and b =6:
g := sum_squares(a+7, (b*a+9)/3)q will be set to 313 }

Note thatout parameters (as well aar parameters) must be a single integer variablegnaxpression
or a constant). Specifically, parameters cannoarpays or strings. But, as mentioned in section thé
design of the TCM is extensible and data types sgdrrays and strings could be added at a fuatee d

You can also use botiut parameterand have aeturn value. For example you can write a task function
like this:

taskfunc sum_and_sum_squares(oyt sum) -> result
sum =X +y
result := x*x + y*y

end taskfunc

Actually, the above example is equivalent to wgtthe following (except for how you obtain result).
taskfunc sum_and_squares(xout sumout result)
sum:=x+y

result := x*x + y*y
end taskfunc

In the first case (the return-value function), sy@ares output is obtained by what you write oetsicthe
function body.
ie q:=sum_and_squares(3,4,sum_of xy)

while in the 2nd case, you are assigning the rewtliin the function body (but the compiler thersigss it
to g outside of the function body’ but ‘under the haswdthat you aren’t aware of it.

sum_and_squares(3,4,sum_of_xy,q)

You can also nest task functions just like you wlo#lS functions except that you cannot use
‘one-line-style’ referencingvithin a function any more than you cautside. For example, if we rewrite the
sum_squares function with nesting, we can wrigsitollows.

Page 9

taskfunc sum_squares(x,y) -> resultresult = x"2 + y"2 }
declaresql

declaresqg2

sql := Square(x)

sq2 := Square(y)

result := sql + sg2
end taskfunc

taskfunc Square(p) -> result
result := p*p
end taskfunc

But, wecan't write it this way.

taskfunc sum_squares(x,y) -> resultThis will be rejected by the compiler }
result ;= Square(x) + Square(y)
end taskfunc

Finally, there is one nice feature of task funcsitimat currently is not supported with KS functiolfigou

have a return value function that performs sommaend returns a value, with KS functions you always
have to provide a variable to receive the retutnesaeven if you then throw it away.

But, with a return-valuéaskfunc, if you want theaction of the function but have no need for the output

value that is returned, you can simply write thection reference without supplying a variable toeree the
return value.

To illustrate this, if you write the following askés function:

function ks.play_note(note,vel,ofst,mode) -> result

result := play_note(note,vel,ofst,mode)
end function

Generally you would have to reference such a foncis shown below, even if you don’'t need the retur
value.

id := ks.play_note(60,60,0,-1)

So, you may have to create a variable to use asow{away bucket (unless you already have a spare
variable available for such a purpose).

However, when you write a similéaiskfunc:

taskfunc tcm.play_note(note,vel,ofst,mode) -> result
result := play_note(note,vel,ofst, mode)
end taskfunc

You can reference suchaskfunc either of the following two ways:

id :=tcm.play_note(60,60,0,-1j if you want the id }
tcm.play_note(60,60,0,-1) {if the id isn’'t needed. }

However, for such a short procedure, using a K$tfan would be much more efficient. The foregoing

example was only presented to illustrate the retatne-throw-away option of task functions (nostaygest
that you should always usdaskfunc for this kind of situation).

Page 10

4.2 Local Variables

As illustrated in the prior sum_squares examplesallvariables are declared in task functions #mes
way they are in KS functions. However, even thotigey are declared the same way, there are some
noteworthy differences between task function loaaiables and the pseudo-local variables we haea be
using in KS functions.

Pseudo local variables declared within a KS fumctice actually global variables with name variagion
As such, the next time such a function is invokad,local vars will still contain the values thegdhwhen
the function last exited. Task function local vates are however, ‘true’ local variables so themtents will
be lost each time the declaring function exitsother words, true local variables don't exist cidgsthe
scope of their defining function (see section 4.3).

On the other hand, because these variables acattbon the active task stack, theyiaherently thread
safe. For example you can write the following tasiction:

taskfunc show 0 to 9
declaren
forn:=0to 9
message(tcm.task & - &n){ Display each digit prefixed by the }
tcm.wait(1000000) { active task id for one second each }
end for
message(")
end taskfunc

Now, if you invoke this function from the NCB, ya@an play any number of notes and each for-loop will
run to completion. In other words, NCB reentrandké mot clobber the for-loop variable becauses a true
local variable (which is thread-safe). Actuallyagk will be created for each new note that occndsesmch
such task will have its own copy of n.

So, local variables declared in either KS or KNdtimns are pseudo locals while those declaredsk ta
functions are true local variables. However, if yaave some kind of situation where you actually twan
use pseudo-local variables (or for that matter @inary global variable), you can declare suchaladas
within a task function by using thecal andglobal directives to explicitly request these types. Nudeever
that if you were to add the local or global direetito the for-loop variable, the show_0 _to 9 function
would no longer be reentrant becanseould not be thread safe.

4.3 Lifetime and Scope

Regardingaskfunc parameters and local variables, you need to utadetdhe concepts diffetime and
scope so you will know when and where you can refereite data. Thdormal parameters of a function
(the parameter names you use when you write theifum not the names of tlaetual parameters you pass
when you invoke the function), as well as the local names, can only be used within the body of the
defining function. We will refer to this as trezopeof the parameters. It means that you cannot ne¢erthe
formals or locals outside of the function body nor can you accesmtfrom a different function even if that
function is invoked within the defining functiontsody (ie invoked as a nested function). Howeveenev
though a caller’'s parameters cannot be referengelebcallee, when the callee exits (returns) eodaller,
the caller’s parameters can again be referencetidogaller. But, when the caller function itselfitexits
formal parameters andcals are no longer accessible. Thus, the parametergusfction are only accessible
by that function (this is thescope), and they no longer exist when the function eftltss is theidifetime).
Advanced users may also want to read section 5.8 diiscussion difetime andscope for user stack data.

Page 11

4.4 Task Variables

For usewithin a task function, local variables can be used torirgy data that needs to be kept thread
safe. But, within KS or KN functions (or for thatatter any code that executes outside of any kind of
function), we need another kind of thread-safealde that we can use. Such variables are caigd
variables. Task variables are the TCM-counterpart of KSP yarly. However, instead of creating arrays
indexed by note-event id (like polyvars), task a&hles are indexed by the active task id. To ilatstithe
idea, suppose you want to create a thread safeblamamedyz. To create such a task variable, you would
first declare an array namegiz[MAX_TASKS]. Using the system constant MAX_TASK®sures that the
array will be sized large enough to provide a cofwyz for all possible concurrent tasks.

Then to accessyz as a task variable, you would write:
xyz[tcm.task] { this accesses the copy of xyz dedicated to theently active task }

The read-only propertigm.task always contains the currently active task id (Wwhi&an integer between
0 and MAX_TASKS - 1). Thus you can usmn.task as an index into theyz array so that each task will
have its own unique copy &¥z (thereby keeping xyz thread safe at the task)evel

To make creating and accessing such task variabkasr, simply define a macro like the following:

macro declare_tvar(#name#)
declare _#name#[MAX_TASKS]
property #name#
function get() -> result
result := _#name#[tcm.task]
end function
function set(val)
_#name#[tcm.task] := val
end function
end property
end macro

Then you can create as many task variables asgedi for your application by simply writing sometin
like declare_tvar(abc)in your ICB. And, once declared, you can referesigeh task variables as if they
were simple variables. For example,

abc =6 or q:=abc

Note that this makes task variables defined wéblare tvar almost the exact counterpart of polyvars. But,
task variables are tied to the active task id rathen (the more-restrictive) active event id Ipayvars are.
Therefore, tvars can be used in any callback typedvide thread safety.

4.5 Task Function Limitations

Most of the limitations of task functions have ablg been mentioned but they are summarized heee. On
limitation is that @askfunc cannot be invoked from the ICB. However, thereudthbe little need to do such
a thing anyway since task functions will usually dssociated with concurrent task situations. Bufpri
some peculiar reason you do need to execute duaskon as part of your initialization, you carwalys
handle it as you would KN functions that need tartveked from the ICB. Basically what you do is agigs
variable at the end of your ICB. This will triggempgs callback right after the ICB exits. You chert test
this pgs variable in the pgs callback (resettingatthis only happens once) and then execute a post
initialization routine. Since it is executed outsiof the ICB, this post-iniitalization routirean containKN
and/ortaskfunc invokations if needed.

Page 12

Unlike KS functions with return values, you canaose even a one-linaskfunc in expressions. When
you invoke a task function on the right side ofassignment statement, it must be all by itselfs®&hould
pose little practical concern since one-line tasicfions would be very unusual anyway.

Task function parameters cannot be arrays, striagslies, or function names. In general task fiorct
parameters are assumed to be numerical integes®ifoething that reduces to a single integer). €asan
for this restriction is that currently, all tasknfttion parameters are passed by value. HoweverT @é
design is such that passing parameters by referemadd be implemented at some future date and,if so
parameter types like arrays and/or strings couldduked.

5.0 The TCM Stack

The TCM uses the stack for function parameterslacal variables but you can also use the TCM stack
at any time as a very conveniextatch-pad area for holding any kind of temporary data. For examiole
hold the interim results of various calculationdarpassing parameters to and from KN functiomsnore
generally, foparking any data you want to keep thread safe. And iffgtlaw a few simple rules which will
be presented in section 5.2, you can use the st&siky and safely. However, you can also misusestidek
if you aren’t careful so you shouldways enable the DEBUG mode before doing any stadperations
(see section 6.3). With the debug mode enabledT @M will automatically detect and report any stack
misuse and keep you from crashing the system withesllegal stack operation.

Finally, please keep in mind that everything tha gan do with the stack can also be done withl loca
variables and/otvars. So, if you aren’t perfectly comfortable with th@lowing material, you can easily
avoid using the TCM stack.

5.1 The Push/Pop Operations

A stack is an abstract data structure that funatigtvehaves in a manner very similar to a staabbpécts
such as dinner plates. When you want to add a fudtes stack, you place it on top of the exissiark and
when you want to remove a plate, you take it offheftop of the stack. The stacks implementedeniGM
behave in a similar fashion so you can view a &akk as an array that can only be accessed oerrmhe
which is called the top. When we retireve data fitben stack, we can only access the topmost iteneriWh
we store data in the stack, we always put it orofajpe existing data already there.

Adding a new value to the top of the stack is Uguealfferred to as ‘a push’ operation while removang
value from the top of the stack is referred to a9o6p’ operation. The TCM has two functions named
tcm.push andtcm.pop to provide these operations. To illustrate how fiair of functions work, suppose we
push the values 3, -9, and 25 onto the stack inotfuer as shown below.

tcm.push(3)
tcm.push(-9)
tcm.push(25)

Then, if we execute 3 pop operations like this:

x :=tcm.pop() x will be set to 25 }
y :=tecm.pop()} y will be setto -9 }
z :=tcm.pop() z will be setto 3}

When we finish the three pops, X, y, and z will team 25, -9, and 3 as shown in the above comments.
Since 25 was the last value pushed, it is the ¥imtite popped. Since 3 was the first value pusibhésl the
last one popped. This last-in/first-out operatisrmihy stacks are often referred to as a LIFO queue
sometimes a FILO queue for first-in/last-out).

Page 13

5.2 Using the Stack

To avoid problems, the stack should only be usel parity by always balancing your pushes and pops.
Simply statedanything you push onto the stack during any processhould be popped off before you
exit that process For example, if you push data from the callbakel itself (ie not within éaskfunc), you
should also pop it off at the callback lebelfore exitingthe callback. If you push data from within the fod
of ataskfunc, you should pop it before you exit that functitfnyou have a nestethskfunc situation, any
data you push while you are within a sub-level fiomcshould also be popped before you exit thatlsuél
function, etc.

Even more important, always push before you popat Tsinever try to pop data that you didn’t
previously push within the same procesAnd, finally, enabl©EBUG modebefore you use the stack and
until you are certain your code is free from stadkuse. However, the above guidelines are a littbee
restrictive than need be so if you want to usesthek more intellegently, you should read secti@t® gain
a better understanding of what you can and canvtitien using the TCM stack.

Unlike local variables which can only be used withitaskfunc, the stack (liketvars), can be used
anywhere. That is, you can push/pop data at thedtipack level, within @aaskfunc or nest of taskfuncs or
within the body of an¥KN or KS function or nest of functions. And, sometimes ggime stack can save you
having to create anothtrar which of course needs to allocate another arrayth® other hand, data placed
on the stack is not named so you have to keep tfwkat you put where and you can only accesstinek
from the top so you have to order your pushes apd [0 be sure you can ‘get at’ the data when ymal rit.

In that regard, local variables and tvars are e&siase because you access the data by name serdially
have random access to it.

Finally, just to illustrate one simple way you aduise the stack we’ll recode thkow_0_to_Saskfunc
from section 4.2 as a KS function. A KS versiortto$ function is shown below but keep in mind tthas
example is not very practical, it is only intendedllustrate the general idea.

function show 0 to 9
declaren
forn:=0to 9
message(tcm.task & -' & n) }
tcm.push(n)
tcm.wait(1000000)
n :=tcm.pop()
end for
end function

If this function is invoked from the NCB and we hibunch of keys, each key will initiate a sepal@b.
And, even though the loop index is only a pseudadlvariable (and thus not thread-safe), the lodp w
nonetheless run properly because we are usinddblk ® save and restore it before and after thisga

Note that the above example would also workhibw_0 to 9were ‘called’ as &N function from the
NCB. Or, for that matter, if we didn’t use a furctiat all but rather coded the loop inline in th@éB\Nwith n
declared as a global variable in the ICB. More ingoatly, it would also work in another callback &yg-or
example if we were to code this in the callbackdhanfor a switch, we could repeatedly depresssthiech
and each loop thus triggered would run correctly.

Page 14

5.3 Stack Data Lifetime and Scope

If you want to use the TCM stack more intelligentypu need to understand the ruleditdtime and
scope for stack data. If you are intaskfunc body when you push data onto the stackstbpe andlifetime
of the stack data is the same asdtupe andlifetime of the parameters and local variables fortdskfunc
that pushes it (see section 4.3). Thus such datheaopped back off only while you are still i thody of
the sameaskfunc and have not yet exited that function (since puglhine data). If you are not irntaskfunc
body when you push data onto the stack]ifie#me andscope of the stack data is the same asdiupe and
lifetime of the task itself. Therefore you can pop the datek off anywhere within the same task provided
the task has not been ‘retired’ (see section Tn@egushing the data.

The following example may help to clarify the abawges onscope andlifetime of user stack data.
Consider the following note callback. The callbacles the stack and also invokes the two functiansea
Parent andChild. Each of these functions also use the stackPament invokesChild in a nest. Finally, the
Parent function includes a 2-sec pause and the callbadkdes a 1-sec pause.

on init
tcm.init(100)
declare y1
declare y2
declare y3
declare y4
end on

on note

tcm.push(23)

tcm.push(-64)

Parent

yl :=tcm.pop() {yl will contain -64 }

Child

tcm.wait(1000000)

y2 :=tcm.pop() {y2 will contain 23}
end on

taskfunc Parent

tcm.push(5)

tcm.push(-7)

tcm.wait(2000000)

Child

y3 :=tcm.pop() {y3 will contain -7 }
end taskfunc

taskfunc Child

tcm.push(1234)

tcm.push(5678)

y4 = tcm.pop() { y4 will contain 5678 }
end taskfunc

Page 15

If we hit a key, the NCB will be triggered and ttelowing will happen. First the values 23 and -#+4
pushed on the stack and then Bagent taskfunc is invoked. This function begins by pughihe values 5
and -7 onto the stack and then pausing for 2-sexxcdndring this pause other callbacks may run or be
continued but when the pause expires, Parent agagtias if nothing had happened.

After the pause, Parent invokes Child which in tpashes 1234 and 5678 onto the stack and then pops
5678 right back off to the global variable namedNdte that when Child exits, it has left 1234 ba stack.
Now, when Parent resumes (after Chigtlirns) it pops the stack to y3. Now you might think tktia¢ value
popped will be the 1234 (that Child left on thec&)ebut you would be wrong on two counts. Firsg stope
rules dictate that the 1234 cannot be accessedymaskfunc other than Child. Secondly, thiéetime rules
stipulate that Child’s stack data will be lost whehild exits. Therefore, what is popped to y3 ie thst
value that Parent pushed onto the stack, namely -7.

After popping to y3, Paremtturns to the NCB where the stack is popped to y1. Nio&t Parent has left
the value 5 on the stack when it exits. So, agamight be tempted to think that the value popped.twill
be thisleftover 5. However,scope andlifetime rules tell us that the leftover 5 will be lost atie value
popped to y1 will be the last value pushed ontcsthek at the callback level, namely -64.

Next, the NCB invokes the Child function again antce Child previously left 1234 on the stack (when
it returned to Parent) you might think that theckteor Child still contains the leftover 1234 anolwnthat we
arein scope again that we could access it when we enter Gbilthis second time. But, while we are in the
right scope, we are in the wronffetime. Since Child has already exited from the invokatiy Parent, the
first 1234 that Child pushed has been lost. Comigpumow with this second invokation of Child, firte
values 1234 and 5678 are pushed onto Chdaljgty stack and then the 5678 is popped back off té\jiden
Child then returns to the NCB, it again has le& #alue 1234 on the stack.

Upon return of Child to the NCB, the NCB then resfgea 1-sec pause afterwhich it pops the stacR.to y
Again the value popped will not be the leftover 4281t rather the last value pushed on the statkeat
callback level, namely 23. The NCB now exits witithing left on the stack.

Normally, you wouldn’t leave data on the stack ke did with this example. When this is done at the
function level, excess data is simply discardedi@afave seen with the example presented. Howdwuge, i
leave data on the stack at the callback leveljlitstay there until the corresponding taskesired and it's
not always easy to determine just when that witlungsee section 7.0). Therefore, unbalanced pusites
task level can cause stack creep and eventual stamlow. Worse than stadakverflow however is stack
underflow which in some cases can crash the system. There®rer pop data you haven't previously
pushed at the same process level. To be surespittis best to activate the DEBUG mode (see ge&i3).
Debug mode will detect and report both stack ovet anderflow and will keep you from inadvertently
crashing the system during your script’s developgmen

Page 16

6.0 TCM Exceptions

When an exception occurs, the TCM will trigger pgs callback and sétm.exception (a read-only
variable) to one of several possible error codé® Kind of exceptions that the TCM can detect apuabnt
(and how your script can use this information dgiievelopment and/or to notify users of your sgntl
be discussed in the following sections.

6.1 Task Overflow

If the maximum concurrency of your application etrggs to exceed the maximum number of tasks that
can be supported by the TCM (see section 3.4)xeeption will be created witttm.exceptionset to the
value of a system constant namBOO_MANY_TASKS. This task overflow condition will always be
detected and reported regardless of whetheDERUG option (see section 6.3) is on or off.

6.2 Stack Overflow/Underflow

Stack overflow can occur whenever one of your nstatk-hungry tasks tries to execute too deep a nest
of task functions and/or when you have pushed toomtemporary data on the stack (see sectionI8c3n
also happen due to stack creep if you use moreggublan pops at the callback level (see sectiogn St&ck
underflow can occur whenever you inadvertentlytorypop more data than you previously pushed orgo th
stack at the same level.

WhenDEBUG mode is activated (see section 6.3), it continlyooonitors for illegal stack operations
that might cause stack overflow or underflow antl gport an exception if such an illegal conditimecurs.
Moreover, since illegal pops can corrupt the TCh&lit, the DEBUG system will not only report such an
underflow, it will also prevent it from crashingetlsystem.

Therefore, during development of your script, ybawdd always enable the DEBUG mode. However, the
monitoring of stack operations does add some oaerthe the TCM’s operation so after you are confiden
that your script is free from illegal stack opevas, you can disable the DEBUG system. But, if gmainot
trying to push your cpu to the limit, you can cheos leave DEBUG active all the time if you wislhedse
see section 6.3 for how to enable the DEBUG mode.

6.3 Using Debug Mode

The debug mode can be activated by includsifl _ CONDITION(TCM_DEBUG) in your script’s
ICB. As mentioned in section 6.2, the TCM can deted report stack overflow or underflow with the
debug mode enabled. Therefore, it is recommendaidythu activate debug mode during development of
your script. After you are reasonably confidentt th@u don’t have any potential stack problems yan c
recompile your scripvithout the SET_CONDITION statement. Alternatively, younadso choose to leave
debug mode active all the time if you don’t mintikide overhead code and cpu usage.

6.4 Handling Exceptions

As already explained in section 6.0, the TCM repexceptions by triggering the pgs callback antingget
tcm.exceptionto an appropriate error code. When there are meptons,tcm.exception will be zero.
However, if an exception occurs, the value storettm.exceptionwill be one of several non-zero error
codes available as system constants with the foligpwames:

TOO_MANY_TASKS

STACK_OVERFLOW
and STACK_UNDERFLOW

Page 17

Therefore, you can write an KS exception handlenglthe lines shown below and invoke it from your
pgs callback.

function exception_handler
selecttcm.exception
caseTOO_MANY_TASKS
message(‘'Too many tasks’)
caseSTACK_OVERFLOW
message(‘Stack overflow’)
caseSTACK_UNDERFLOW
message(‘Stack underflow’)
end select
end function

For the above illustration, the handler only ouspuessages to the Kontakt status line. Howeveydior
actual handler, you will probably want to displayrething a little more noticeable for each casetheun,
when an exception occurs, your script may ceaseti properly and loud notes could be left hangingit
might be a good idea to include something hik¢ée off(ALL_EVENTS) in your specific handlers.

Also, since the pgs callback can miss triggers tlcaur while the callback is still running (seetesst
3.5), you should probably position your excepticemdier at the very end of the pgs callback (oreast
after any pauses). That way if a TCM exception oceavhile the pgs callback is paused, your handiér w
still notice the exception before exiting the cattk. Exceptions that occafter the pgs callback exits will
of course retrigger the pgs callback and thus bieeuh

7.0 Relating Tasks to Callbacks

As discussed in section 3.2, when you replacevalt calls with tcm.wait, you effectively ‘tie’ task
concurrency with callback concurrency. Howevegatl want to mixwait calls withtcm.wait calls, it will
be important for you to understand just how the T(&lates tasks to callbacks. Only then will youalée
to determine just when and where you might be &blesewait instead otcm.wait. For sophisticated users
who want to explore this possibility, the followisgmmary of how the TCM operates may prove useful.

TCM tasks have three possible states which caretieed! agetired, active, andsuspended Initially all
but one task is marked agtired. The one task not markeetired is marked asctive. This active task is
thenstanding by to support callbacks which may invoke task funtdi@and/or use the stack. Téaetive task
remains unchanged until the first callback contagnatcm.wait gets triggered. However, when the first
tcm.wait request is encountered, ttadlback id (as well as thactive task’s stack state) is saved and a new
active task with an empty stack is created. The savddisathen marked asispended and the nevactive
task is nowstanding by to support any new callbacks that may be triggegthg the suspension.

When one or more tasks aespended, eventually one of the paused callbacks will tmoéand the TCM
will regain control. The TCM will then determine igh callback has resumed (by readingcaHback id),
and then restore the saved state for that callbeek. TCM will thenretire the current ‘stand-by task’ task
(thus ending it$ifetime) and the resumed task then becomesdtige task.

From the foregoing you can see that theralwgys anactive task standing by but therengver more
than oneactive task at a time. All other tasks are eithaspended or in the available task pool (ietired).

Page 18

8.0 Reserved Names and System Constants
Since Kontakt doesn’'t provide any support for kagpvariable and function names private, there is
always the possibility that you might accidentalse a name in your script that the TCM is alreagggi Of
course the KSE will warn you if you declare a naimat’s already in use but, nothing prevents younfro
referencing one of the system functions or vargmbléhere is little harm as long as all you are dam
reading a system variable but, if you execute &esydgunction or alter one or more system varialytms
could end up crashing your application.

The purpose of this section is to list the namesiusy the TCM and tell you which ones are in thé ‘o
limits’ category. Consulting this list may save yfioom getting compiler errors due to name duplaatibut
more importantly, it can help you to avoid clobbegra critical system variable unintentionally.

Variables that you need to read but aren’t alloteedlter are coded as read-only properties so yanitw
be able to accidentally overwrite these valuesguiie same name. System constants can of courngdenl
read and not altered so these don’'t need to begieat.

User Interface

Functions Read-Only Variables
tcm.init tcm.push tcm.exception { exception code }
tcm.pop tcm.wait tcm.task { active task id }

Compiler Switch
TCM_DEBUG {useSET_CONDITION(TCM_DEBUG) to enable debug mode }

System Constants
TOO_MANY_TASKS { exceptioncodes }
STACK_OVERFLOW
STACK_UNDERFLOW

MAX_TASKS { maximum tasks supported }

MEM_SIZE { available memory for all task stacks }
STACK_SIZE { maximum stack depth that you specified }
TASK 0 { an internal value used by the TCM }

System Off Limits

Variables Functions
fp tstate.fp check_empty
p tstate.fs check_full
sp tstate.fs prolog_end
tx tstate.sp set_exception
TCM_EXCEPTION { pgs key } _twait

If you avoid referencing the 9 variables and 5 fiows listed above as ‘System Off Limits’, you shbu
have no problems with your script using the TCMeaiys

Page 19

